Transform Calculator

Common Functions:

1 (unit step)
t (ramp)
tⁿ
e^(-at)
sin(ωt)
cos(ωt)
t·sin(ωt)
t·e^(-at)
e^(-at)·sin(ωt)

Laplace Transform Table

f(t) L{f(t)} = F(s) ROC
δ(t)1All s
u(t)1/sRe(s) > 0
t1/s²Re(s) > 0
2/s³Re(s) > 0
tⁿn!/sⁿ⁺¹Re(s) > 0
e^(-at)1/(s+a)Re(s) > -a
te^(-at)1/(s+a)²Re(s) > -a
tⁿe^(-at)n!/(s+a)ⁿ⁺¹Re(s) > -a
sin(ωt)ω/(s²+ω²)Re(s) > 0
cos(ωt)s/(s²+ω²)Re(s) > 0
sinh(ωt)ω/(s²-ω²)Re(s) > |ω|
cosh(ωt)s/(s²-ω²)Re(s) > |ω|
e^(-at)sin(ωt)ω/((s+a)²+ω²)Re(s) > -a
e^(-at)cos(ωt)(s+a)/((s+a)²+ω²)Re(s) > -a
t sin(ωt)2ωs/(s²+ω²)²Re(s) > 0
t cos(ωt)(s²-ω²)/(s²+ω²)²Re(s) > 0
e^(at)1/(s-a)Re(s) > a
te^(at)1/(s-a)²Re(s) > a

Transform Result

L{f(t)} = F(s)
Result will appear here
Region of Convergence: Re(s) > 0

Solution Steps:

Step 1:
Apply the definition of Laplace transform

Laplace Transform Properties

The Laplace transform is a powerful integral transform used in engineering and mathematics to solve differential equations and analyze linear time-invariant systems.

Definition (Forward)
L{f(t)} = ∫₀^∞ f(t)e^(-st) dt
Linearity
L{af(t) + bg(t)} = aF(s) + bG(s)
Time Shifting
L{f(t-a)u(t-a)} = e^(-as)F(s)
Frequency Shifting
L{e^(at)f(t)} = F(s-a)
Differentiation
L{f'(t)} = sF(s) - f(0)
Integration
L{∫f(t)dt} = F(s)/s